the Use of Seat Belts - United States, 1985
513 Results of a Gallup Poll on Acquired Immunodeficiency Syndrome - New York City, United States, 1985
515 Cutaneous Leishmaniasis - Ohio

State Legislative Activities Concerning the Use of Seat Belts - United States, 1985

Representatives of automotive safety, the insurance industry, and public health have for many years advocated greater use of child safety seats and seat belts to substantially reduce the morbidity, mortality, and costs associated with motor vehicle collisions. With Wyoming's adoption of a child-restraint law this year, all 50 states now have enacted laws requiring installation and use of restraint systems to protect infants and children (generally those under 5 years old) who are passengers in automobiles.

In 1984, the U.S. Department of Transportation (DOT) promulgated rules providing that automatic occupant-protection systems will be phased in beginning in model year 1987. All automobiles produced after September 1, 1989, will be required to be so equipped. However, if states collectively representing two-thirds of the nation's population adopt laws meeting DOT criteria (Table 1), the Secretary of Transportation may rescind the requirement.

At least one bill making seat belt use mandatory was introduced in all but two (Idaho and Nevada) of the 49 states with 1985 sessions. CDC has monitored these legislative activities using reports provided by the Commerce Clearing House, Inc. (Chicago, llinois). Multiple bills have been introduced in some states. In New York alone, 42 bills dealing with seat belts have been introduced so far this year. Two states (New Jersey and New York) enacted mandatory seat belt laws in 1984, and 12 states (Connecticut, Hawaii, lliinois, Indiana, Louisiana, Michigan, Missouri, Nebraska, New Mexico, North Carolina, Oklahoma, and Texas) enacted mandatory seat belt laws in 1985. The laws are already in effect in four states (Illinois, Michigan, New Jersey, and New York).

Three types of seat belt bills introduced or enacted by states deal with automobile occupants: (1) those requiring use by all occupants (Figure 1); (2) those requiring use by front-seat occupants (Figure 2); and (3) those requiring use by occupants under a certain age (e.g., under 11 years old in New Mexico; under 16 years old in Oregon) (Figure 3). All of the laws enacted

TABLE 1. U.S. Department of Transportation criteria for mandatory seat belt laws

The laws must:

1. Require that front-seat occupants of a passenger car have seat belts properly fastened when the vehicle is moving forward. The center seat is exempt. Only medical waivers are permitted.
2. Levy at least a $\$ 25$ penalty for each occupant in violation.
3. Provide that violation of the law may be used to mitigate damages when a violator is in a collision and seeks to recover damages.
4. Provide a program to encourage compliance.
5. Become effective no later than September 1, 1989.

Use of Seat Belts - Continued
to date require seat belt use by front-seat occupants only, a minimum condition of the DOT regulation. However, 18 states have introduced bills that require seat belt use by all automobile occupants, not a condition of the DOT regulation (Figure 1).

In addition, 28 states have introduced legislation requiring seat belt installation and/or use in school buses (Figure 4). School buses are not covered by the DOT regulation.

FIGURE 1. States introducing bills requiring seat belt use by all occupants - United States, 1985

FIGURE 2. State introducing and/or enacting mandatory front-seat occupant seat belt use bills - United States, 1985

Use of Seat Belts - Continued
Reported by Office of Program Planning and Evaluation, Office of the Director, Behavioral Epidemiology and Evaluation Br, Div of Health Education, Center for Health Promotion and Education, Injury Epidemiology and Control Div, Center for Environmental Health, CDC.
Editorial Note: In 1983, nearly 30,000 occupants of automobiles died on U.S. highways.
FIGURE 3. States introducing and/or enacting bills mandating seat belt use by occupants under a certain age* - United States, 1984-1985

-Minimum ages vary by state.

FIGURE 4. States introducing bills mandating seat belt use or study of use in school buses - United States, 1985

Use of Seat Belts - Continued

Only 484 (2%) were reportedly wearing seat belts (1). Seat belts could prevent at least 60\% of serious injuries to older children, teenagers, and adults in automobile collisons (2). Similarly, properly used child restraints could prevent virtually all serious injuries to infants and younger children (3).

Current data suggest that mandatory-use legislation has increased seat belt use rates and decreased highway fatality rates. In Tennessee, where child-restraint use became mandatory January 1, 1978, child-restraint use rates increased from less than 10\% before the law to greater than $40 \% 4$ years after the law; automobile-associated deaths among children under 4 years old decreased more than 50% during the same period (3). In New York, where seat belt use became mandatory January 1, 1985, seat belt use rates increased from 16% before the law to $57 \% 4$ months after the law; fatalities decreased 19%, despite a modest increase in mileage driven (4).

If state laws fail to meet the DOT criteria, all new cars will have to incorporate automatic occupant-protection systems, such as automatic seat belts, airbags, or passive interiors, none of which require active commitment by the vehicle occupant. Nonbelt occupant-protection systems used together with seat belts afford greater protection to motor vehicle occupants than either used alone (5).
(Continued on page 513)
TABLE I. Summary-cases of specified notifiable diseases, United States

Disease	33rd Week Ending			Cumulative, 33rd Week Ending		
	$\begin{gathered} \text { Aug. } 17 \\ 1985 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug. } 18, \\ 1984 \end{gathered}$	$\begin{gathered} \text { Median } \\ 1980-1984 \end{gathered}$	$\begin{gathered} \text { Aug. } 17 . \\ 1985 \\ \hline \end{gathered}$	$\begin{gathered} \text { Aug. } 18, \\ 1984 \end{gathered}$	$\begin{gathered} \text { Median } \\ 1980-1984 \end{gathered}$
Acquired Immunodeficiency Syndrome (AIDS)	188	80	N	4.840	2,522	N
Aseptic meningitis	410	304	362	4,029	3.770	4.235
Encephalitis: Primary (arthropod-borne \& unspec.)	23	38	47	596	610	705
Post-infectious	1	1	1	83	83	64
Gonorrhea: Civilian	17,194	18,011	18,903	521.036	514.508	599.217
Military	437	423	446	11.455	13,601	17.135
Hepatitis: Type A	396	434	449	13,577	13,070	14.026
Type B	506	497	446	15,989	15,915	13,439
Non A, Non B	76	71	N	2.568	2.406	N
Unspecified	108	107	190	3.593	3,078	5.437
Legionellosis	8	8	N	367	359	N
Leprosy	6	7	6	239	146	146
Malaria	45	38	38	621	573	658
Measles: Total ${ }^{\text {- }}$	66	25	25	2.269	2.197	2,197
Indigenous	59	23	N	1.859	1.947	N
imported	7	2	N	410	250	N
Meningococcal infections: Total	18	28	36	1,631	1.939	1.939
(eivilian	18	28	36	1,628 3	1.935 4	1,935 12
Mumps Military	27	34	34	2,087	2,117	3.099
Pertussis	71	54	54	1,270	1,307	974
Rubella (German measles)	10	8	22	479	494	1.694
Syphilis (Primary \& Secondary): Civilian	486	594	640	15,939	17.526 216	19.051 238
Military	2	3	${ }^{6}$	99 241	216 321	238
Toxic Shock syndrome	7	7 378	N	$13241{ }^{\circ}$	1329	N
Tuberculosis	486	378	478	13,305	13.290	15.928 148
Tularemia	2	15	8 13	96 203	206	148
Typhoid fever	10	8	13	203	206	244
Typhus fever, tick-borne (RMSF)	36	36 203	49 140	420 3.266	570 3.336	808 4.057
Rabies, animal	87	203	140	3.266	3.336	4.057

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1985		Cum. 1985
Anthrax	3	Leptospirosis (Mich. 2, Tenn. 1)	20
Botulism: Foodborne (Wash. 1)	33	Plague	10
Infant (Wash. 1, Calif. 2)	32	Poliomyelitis: Total	3
Other	1	Paralytic	3
Brucellosis (lowa 2, Calif. 1)	79 3	Psittacosis (lowa 1, Fla. 1)	74
Cholera	3	Rabies, human	-
Congenital rubella syndrome	111	Tetanus (Maine 1)	39
Congenital syphilis, ages < 1 year	111	Trichinosis	48
Diphtheria	1	Typhus fever, flea-borne (endemic, murine)(Tex.1, Calif. 1)	11

-Two of the 66 reported cases for this week were imported from a foreign country or can be directly traceable to a known internationally imported case within two generations.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
August 17, 1985 and August 18, 1984 (33rd Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonormea (Civilian)		Hepatitis (Viral), by type				Legionellosis	Leprosy
			Primary	Post-infectious			A	B	NA,NB	Unspecified		
	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1985	1985	1985	1985	1985	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$
UNITED STATES	4,840	410	596	83	521,036	514,508	396	506	76	108	8	239
NEW ENGLAND	176	38	15	-	14,777	14,365	11	30	2	9	3	4
Maine	7	8	-	-	697	597	1	1	-	-	-	-
N.H.	-	1	4	-	355	429	-	-	-	-	-	-
Vt .	1	1	-	-	198	232	-	1	-	-	-	-
Mass.	103	20	10	-	5.749	5.919	5	16	2	8	2	4
R.I.	9	3	-	-	1,132	979	2	2	-	-	1	-
Conn.	56	5	1	-	6.646	6,209	3	10	-	1	-	-
MID ATLANTIC	1,961	128	85	6	78,496	70,714	34	58	12	4	-	19
Upstate N.Y.	240	30	29	4	10,601	10,459	8	15	4	-	-	-
N.Y. City	1,320	14	7	-	38,742	29,669	1	1		-	-	19
N.J.	283	84	21	-	12,180	11.959	12	12	2	3	-	-
Pa .	118	-	28	2	16.973	18,627	13	30	6	1	-	-
E.N. CENTRAL	198	77	133	18	74,012	71,174	13	53	8	5	1	21
Ohio	36	36	53	4	18,767	18,738	6	28	2	-	-	3
Ind.	13	13	22	2	7.546	8,091	1	2	1	2	-	-
III.	96		14	7	20,001	15,769	1	4	2	1	-	16
Mich.	37	28	32	-	20,771	20,633	5	19	3	2	1	2
Wis.	16	8	12	5	6.927	7.943	-	-	-	-	-	-
W.N. CENTRAL	53	20	41	3	25,536	24,876	16	14	5	-	2	-
Minn.	14	3	19	1	3,719	3,749	3	6	3	-	1	-
lowa	8	3	12	-	2,775	2.698	-	1	-	-	-	-
Mo.	23	8	.	-	12,327	12,052	1	5	1	-	1	-
N. Dak.	-	-	-	1	167	244	-	-	-	-	-	-
S. Dak.	-	2	5	-	471	593	8	-	-	\bullet	-	-
Nebr.	3	1	5	-	2,235	1.718	2	1	-	-	-	-
Kans.	5	3	5	1	3.842	3.822	2	1	1	-	-	-
S. ATLANTIC	735	53	74	28	113.854	130,392	39	122	12	14	-	5
Del.	9	7	4	-	2,569	2,343	1	1	-	-	-	-
Md.	92	7	16	1	18,367	14,789	3	14	1	-	-	1
D.C.	95	-	-	-	9,616	9.431	-	5	-	-	-	-
Va .	51	12	17	4	11.927	12.421	2	12	1	1	-	-
W. Va.	5	1	13		1.533	1.607	1	1	1	-	-	-
N.C.	35	5	21	-	21,564	21.080	3	23	.	3	-	2
S.C.	6	2	3	-	14.019	13.011	-	20	2	4	-	-
Ga.	120	6	-	-	-019	24,283	6	23	3	-	-	1
Fla.	322	13	-	23	34,259	31,427	23	23	4	6	-	1
E.S CENTRAL	44	11	23	4	46,397	44.833	3	33	2	-	-	-
Ky.	12	-	8	-	5,250	5.415	3	6	-	-	-	-
Tenn.	14	3	4	-	17.856	18,624	-	18	2	-	-	-
Ala.	16	7	9	4	14.133	14.397	-	9	-	-	-	-
Miss.	2	1	2	-	9.158	6.397	-	-	-	-	-	-
W.S. CENTRAL	354	16	78	2	70,300	70.595	43	26	2	14	-	16
Ark.	5	1	3	1	6.680	6,396	4	-	-	-	-	1
La.	60	-	3	-	14.421	15,861	-	2	-	-	-	1
Okla.	8	4	17	1	7.451	7.555	2	1	-	$\stackrel{\rightharpoonup}{4}$	-	-
Tex.	281	11	55	-	41,748	40.783	37	23	2	14	-	14
MOUNTAIN	70	5	27	5	17.200	16,594	48	23	2	7	-	5
Mont.	.	1	-	5	479	717	-	1	-	-	-	-
Idaho	-	-	-	-	516	831	8		-	1	,	-
Wyo.	-	U	1	-	380	478	U	U	U	U	U	-
Colo.	25	4	6	1	5.137	4,780	9	4	-	4	-	1
N. Mex.	7	-	3	-	1,960	1.896	-	-	-	-	-	1
Ariz.	25	-	5	-	5,113	4.452	20	-	-	-	-	1
Utah	10	-	8	4	733	818	3	9	2	2	-	2
Nev.	3	-	4	-	2.882	2,622	8	9	2	-	-	1
PACIFIC	1.249	62	120	17	80,464	70.965	189	147	31	55	2	169 33
Wash.	78	5	13	-	5,707	5,075	11	8	2	-	-	33
Oreg.	16	-	1	-	3,997	4.085	28	11	3	,		3
Calif.	1.135	53	103	17	67,744	58,821	145	123	26	54	2	114
Alaska	2	5	3	-	1,861	1,779	-	3		1	-	-
Hawaii	18	4	-	-	1,155	1,205	5	2	-	-	-	19
Guam	-	U	-	-	81	159	U	U	U	U	U	1
P.R.	53	3	4	2	2,201	2,149	6	22	-	26	-	2
V.I.	2	U	-	-	312	356	U	U	U	U	U	-
Pac. Trust Terr.	-	U	-	-	146	-	U	U	U	U	U	20

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
August 17, 1985 and August 18, 1984 (33rd Week)

Reporting Area	Malaria	Measles (Rubeola)					Menin- gococcalInfections	Mumps		Pertussis			Rubella		
		Indigenous		Imported *		$\begin{aligned} & \text { Total } \\ & \hline \text { Cum. } \\ & 1984 \end{aligned}$									
	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$			1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$
UNITED STATES	621	59	1,859	7	410	2,197	1,631	27	2,087	71	1.270	1.307	10	479	494
NEW ENGLAND	34	1	37	-	87	103	70	-	42	6	75	35	-	12	18
Maine	4	-	-	-	1	36	2	-	6	-	2	1	-	12	18 1
$\mathrm{N} . \mathrm{H}$.	4 1	-	-	-	-	36	9	-	7	1	29	6	-	2	1
Mass.	17	1	33	-	83	47	r 9	-	14	5	3 22	17 9	-	6	16
R.I.	2	,	3	-	83	4	13	-	8	5	12	1	-	6	16
Conn.	6	-	4	-	3	13	25	-	5	-	7	1	-	4	-
MID ATLANTIC	96	1	166	-	28	142	284	1	219	4	80	109	8	205	174
Upstate N.Y.	30	-	71	-	10	31	110	.	125	4	43	61	8	17	98
N.Y. City	34	1	52	-	8	100	47	-	14	-	9	5	8	166	58
N.J.	12	-	16	-	10	7	43	1	28	-	3	7		9	17
Pa.	20	-	27	-	-	4	84	-	52	-	25	36	-	13	1
E.N. CENTRAL Ohio	28	3	348	2	134	664	286	5	793	8	162	348	-	21	77
Ind.	6	1	49	-	49	9	94	1	237	7	32	57	.	2	2
III.	5	2	49 206	-	6 6	[3	38	3	36	-	11	220	-	1	2
Mich.	12	2	37	$2 \S$	17	455	64	1	164	-	17	23	-	5	47
Wis.	2	-	37 56	2	17	455 35	62 28	1	283 73	1	29 73	20 28	-	14 1	18 8
W.N. CENTRAL	20	-	1	-	10	10	84	-	63	6	94	104	-	19	31
Minn.	9	-	-	-	6	3	21	-	1	2	29	12	-	2	2
Mo.	1	-	-	-	2	3	7 34	-	9	4	5	8	-	1	1
N. Dak.	1	-	-	-	2	3	34 3	-	11	4	23	16	-	7	-
S. Dak.	1	-	-	-	2	-	2	-	2	-	9	7	-	2	3
Nebr.	1	-	-	-	-	-	7	-	2	-	4	11	-	-	-
Kans.	3	-	1	-	-	4	10	-	38	-	23	50	-	7	25
S. ATLANTIC Del.	81	19	252	-	10	44	317	1	197	17	273	146	1	55	21
Md.	19	15	84	-	4	17	7 43	-	1 27	9	123	47	-	1	1
D.C.	4	3	5	-	1	8	43 6	-	27	9	123	47	-	6	1
Va .	18	-	21	-	3	5	40	-	36	-	8	17	-	2	-
W. Va.	2	-	31	-	-	-	8	-	56	-	2	9	-	11	-
N.C.	8	-	9	-	-	-	43	-	11	1	15	17	-	11	-
S.C.	-	1	1	-	-	1	32	-	7	1	1	2	-	3	-
Ga.	6	-	8	-	-	-	53	-	28	3	76	13	-	4	2
Fla.	24	-	93	-	2	13	85	1	31	3	47	39	1	28	18
E.S. CENTRAL	8	-	2	-	1	3	75		23	-	17	8	-	2	9
Ky.	2	-	2	-	-	1	5	4	8	-	3	1	-	2	3
Tenn.	5	-	-	-	-	2	30	1	13	-	5	4	-	2	3
Ala.	5	-	-	-	-	-	24	.		-	6	4	.	-	3
Miss.	1	-	-	-	1	-	16	-	2	-	3	3	-	-	3
W.S. CENTRAL	58	3	406	-	13	508	142	8	224	4	190	245	-	29	6
Ark.	,	-	-	-	-	8	13	.	4	-	12	r 15	-	2	3
La.	1	-	42	-	-	-	22	-	2	1	10	4	-	1	3
Okla.	2	-	-	-	1	8	27	N	N	3	98	211	.	1	-
Tex.	55	3	364	-	12	492	80	8	218	-	70	15	-	27	3
MOUNTAIN	32	31	483	-	44	144	70	-	201	1	99	91	1		
Mont.	32	3	122	-	17	144	5	-	201	1	99 5	18	1	5	17
Idaho	1	-	123	-	18	23	2	-	9	-	3	7	-	1	1
Wyo.	1	U	-	U	7		6	U	2	U	3	7 3	U	1	2
Colo.	10	2	3	U	7	6	19	U	16	U	31	32	U	-	2
N. Mex.	10	-	1	-	2	88	8	N	N	-	10	6	-	2	2
Ariz.	5	29	234	-	-	-	18	N	99	-	24	17	-	1	1
Utah	2		-	-	-	27	7	-	6	1	26	6	-	1	7
Nev.	3	-	-	-	-	27	5	-	62	1	26	6 2	1	1	7
PACIFIC	264	1	164	5	83	579	303	7	325	25	280				
Wash.	18	-	9	-	32	134	55	7	325 29	25 4	280 50	221 58	-	131 11	141 1
Oreg.	11	1	13		-	-	28	N	+	8	50 29	58 14	-	11 2	1 1
Calif.	218	1	138	$5 \dagger \$$	46	296	209	5	276	8	162	79	-	75	135
Alaska	2	-	14	-	5	149	7	2	6	1	28	1	-	1	1
Hawaii	15	-	14	-	5	149	4	2	14	4	11	69	-	42	3
Guam	1	U	10	U	-	90	-								
P.R.	-	-	50	-	-	4	10°	1		1	9	-	U	21	4
V.I.	-	U	4	U	6		10	U	123 3	U	9	-	1	25	6
Pac. Trust Terr.	-	U		U		-	-	U	3 3	U	-	-	U U	-	-

-For measles only, imported cases includes both out-of-state and international importations.
\mathbf{N} Not notifiable $\quad \mathbf{U}$: Unavailable ${ }^{\boldsymbol{t}}$ International ${ }^{\mathbf{~}}$ Out-of-state

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending August 17, 1985 and August 18, 1984 (33rd Week)

TABLE IV. Deaths in 121 U.S. cities,* week ending
August 17, 1985 (33rd Week)

Reporting Area	All Causes, By Age (Years)						P\& 1^{-*} Total	Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\&1" }{ }^{\circ} \\ & \text { Total } \end{aligned}$
	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	$\geqslant 65$	45-64	25-44	1-24	<1			All Ages	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND	635	430	128	37	15	25	52	S. ATLANTIC	1,221	717	297	113	45	47	61
Boston, Mass.	178	103	37	16	7	15	24	Atlanta, Ga .	154	93	42	14	5		4
Bridgeport, Conn.	50	31	13	2	3	1	3	Baltimore, Md.	204	123	54	17	6	4	3
Cambridge, Mass.	25	22	2	1	-	-	3	Charlote, N.C.	71	42	16	8	3	2	13
Fall River, Mass.	19	17	1	1	-	-	-	Jacksonville, Fla.	130	76	27	12	8	7	13
Hartford, Conn.	34	17	12	2	-	3	-	Miami, Fla.	109	57	29	11	8	4	1
Lowell, Mass.	18	14	2	2	-	-	-	Norfolk, Va.	36	20	10	4	2	.	-
Lynn, Mass.	22	13	6	1	1	1	1	Richmond, Va.	71	33	26	8	3	1	9
New Bedford, Mass.	s. 28	21	6	-	1	-	1	Savannah, Ga	35	21	5	2	2	5	3
New Haven, Conn.	43	31	7	5	-	-	-	St. Petersburg, Fla.	94	81	6	3	1	3	9
Providence, R.I.	79	62	13	1	2	1	11	Tampa, Fla.	67	40	13	8	-	4	6
Somerville, Mass.	6	4	1	1	-	-	-	Washington, D.C.	227	115	63	26	7	16	.
Springfield, Mass.	40	28	10	-	-	2	5	Wilmington, Del.	23	16	6	-	-	1	-
Waterbury, Conn.	34	26	6	1	-	1	-								
Worcester, Mass.	59	41	12	4	1	1	4	E.S. CENTRAL	649	390	156	47	25	31	25
								Birrningham, Ala.	108	55	23	11	7	12	4
MID ATLANTIC 2,	2,554	1.629	560	243	71	51	118	Chattanooga, Tenn.	70	36	28	3	2	1	4
Albany, N.Y.	45	29	9	4	-	3	-	Knoxville, Tenn.	59	48	8	-	-	3	1
Allentown, Pa.	21	19	1	1	$\overline{-}$	-	-	Louisville, Ky.	98	64	20	10	3	1	1
Buffalo, N.Y.	111	69	29	8	2	3	11	Memphis, Tenn.	100	64	21	8	5	2	5
Camden, N.J.	38	24	10	2	2	-	1	Mobile, Ala.	56	33	13	3	2	5	3
Elizabeth, N.J.	22	17	5	-	-	-	2	Montgomery, Ala.	41	26	10	1	1	3	2
Erie, Pa.t	43	36	5	2	$\bar{\square}$	-	3	Nashville, Tenn.	117	64	33	11	5	4	5
Jersey City, N.J.	32	21	7	3	1	-	1								
N.Y. City, N.Y. 1	1.321	818	283	160	38	22	49	W.S. CENTRAL	1.378	874	269	119	61	55	54
Newark, N.J.	82	36	23	11	6	6	7	Austin, Tex.	65	35	14	9	2	5	5
Paterson, N.J.	23	10	8	4	-	1	2	Baton Rouge, La.	55	35	10	7	1	2	2
Philadelphia, Pa.	397	258	96	19	13	11	20	Corpus Christi, Tex.	28	18	7	2	-	1	1
Pittsburgh, Pa. \dagger	46	27	11	6	1	1	3	Dallas, Tex.	184	94	53	20	6	11	5
Reading, Pa.	35	27	5	3	-	-	5	El Paso, Tex.	54	36	12	6	-	-	1
Rochester, N.Y.	106	82	18	3	2	1	8	Fort Worth, Tex.	98	58	25	6	3	6	10
Schenectady, N.Y.	21	16	4	1	-	-	-	Houston, Tex. §	307	261	2	10	22	12	5
Scranton, Pa.t	29	21	6	1		$\overline{-}$	1	Little Rock, Ark.	71	38	21	10	-	2	8
Syracuse, N.Y.	81	53	18	3	4	3	2	New Orleans, La.	175	108	45	15	6	1	-
Trenton, N.J.	50	29	13	8	-	-	-	San Antonio, Tex.	185	98	46	21	13	7	12
Utica, N.Y.	19	14	4	1	-	-	-	Shreveport, La.	91	45	24	9	7	6	1
Yonkers, N.Y.	32	23	5	3	1	-	3	Tulsa, Okla.	65	48	10	4	1	2	4
E.N. CENTRAL 2	2,120	1.451	379	130	71	88	82	MOUNTAIN	568	364	126	51	14	12	28
Akron, Ohio	58	38	17	2	-	1	-	Albuquerque, N.Mex	-. 60	40	14	3	1	2	2
Canton, Ohio	28	23	3	1	1	\cdots	3	Colo. Springs, Colo.	28	21	4	1	2	-	2
Chicago, lill.§	553	462	11	26	16	37	16	Denver, Colo.	104	65	27	8	2	2	7
Cincinnati, Ohio	191	122	42	12	10	5	17	Las Vegas, Nev .	80	46	25	4	3	1	5
Cleveland, Ohio	140	90	32	6	4	8	4	Ogden, Utah	25	21	3	1	-	-	1
Columbus, Ohio	134	78	34	8	6	8	-	Phoenix, Ariz.	132	78	24	23	3	4	1
Dayton, Ohio	91	61	19	8	2	1	2	Pueblo, Colo.	23	17	4	2	-	-	2
Detroit, Mich.	231	118	61	27	11	14	5	Salt Lake City, Utah	38	23	5	6	2	2	1
Evansville, Ind.	34	28	5	1	-	-	2	Tucson, Ariz.	78	53	20	3	1	1	7
Fort Wayne, Ind.	41	30	6	2	3	-	4								
Gary, Ind.	16	6	4	4	2	-	-	PACIFIC	1.760	1.107	378	148	64	60	97
Grand Rapids, Mich	ch 31	19	7	2	2	1	3	Berkeley, Calif.	11	10	1	-	7	-	-
Indianapolis, Ind.	162	100	43	11	4	4	2	Fresno, Calif.	76	50	12	5	7	2	4
Madison, Wis.	31	13	10	5	1	2	1	Glendale, Calif.	28	19	5	2	-	2	2
Milwaukee, Wis.	115	82	27	2	2	2	4	Honolulu, Hawaii	37	19	13	2	2	1	-
Peoria, III.	37	31	3	2	-	1	3	Long Beach, Calif.	96	57	30	7	-	2	14
Rockford, III.	30	22	4	1	2	1	1	Los Angeles, Calif.	545	325	113	54	26	24	17
South Bend, Ind.	46	37	7	2	-	-	6	Oakland, Calif.	72	48	14	7	2	1	6
Toledo, Ohio	99	61	27	6	3	2	9	Pasadena, Calif.	21	10	7	-	2	2	1
Youngstown, Ohio	- 52	30	17	2	2	1	-	Portland, Oreg.	78 116	55 71	15 24	4 10	3 6	1	1
W.N. CENTRAL	695	466	141	40	19	29	16	San Diego, Calif.	129	77	30	13	5	4	11
Des Moines, Iowa	67	50	7	4	2	4	-	San Francisco, Calif.	. 151	95	34	17	4	1	9
Duluth, Minn.	26	20	4	2	-	-	1	San Jose, Calif.	147	101	29	9	4	4	11
Kansas City, Kans.	. 23	19	3	5	1	-	-	Seattle, Wash.	134	86	27	12	1	8	5
Kansas City, Mo.	$\begin{array}{r}93 \\ \hline\end{array}$	58	26	5	-	4	3	Spokane, Wash.	54 65	41 43	11 13	6	1	1	6 2
Lincoln, Nebr.	29	24	3	1	1	5	1	Tacoma, Wash.	65	43	13	6	1	2	2
Minneapolis, Minn.	+ 71	46	11	4	5	5	1		$11.580^{\dagger \dagger}$						
Omaha, Nebr.	103	69	20	7	1	6	4	TOTAL	11.580	7.428	2,434	928	385	398	533
St. Louis, Mo.	131	84	26	14	1	6	3								
St. Paul, Minn.	60	42	14	1	2	1									
Wichita, Kans.	92	54	27	2	6	3	3								

-Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
-• Pneumonia and influenza.
\dagger Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
$\dagger \dagger$ Total includes unknown ages.
§ Data not available. Figures are estimates based on average of past 4 weeks.

Use of Seat Belts - Continued
Continued promotion of occupant-protection programs is likely to change seat belt use patterns and highway fatality rates nationwide. It is important that these changes be monitored carefully to assess program effectiveness and to target areas for improvement. Since the states are responsible for enacting and enforcing mandatory-use laws, state-specific surveillance of seat belt use and highway fatality rates will be a vital component in the evaluation process.

References

1. Cerelli EC. The 1983 traffic fatalities early assessment. Washington, D.C.: National Highway Traffic Safety Administration, March 1984 (DOT publication no. HS-806-541).
2. Campbell BJ. Safety belt injury reduction related to crash severity and front seated position. Chapel Hill, North Carolina: University of North Carolina Highway Safety Research Center, March 1984 (HSRC publication no. PR 129).
3. Decker MD, Dewey MJ, Hutcheson RH Jr, Schaffner W. The use and efficacy of child restraint devices: the Tennessee experience, 1982 and 1983. JAMA 1984;252:2571-5.
4. Rourke, W. Governor's Traffic Safety Committee. Personal communication.
5. National Highway Traffic Safety Administration. Federal motor vehicle safety standard: occupant crash protection. Federal Register 1984;49:28962-9010 (docket no. 74-14; notice no. 36).

Results of a Gallup Poll on Acquired Immunodeficiency Syndrome New York City, United States, 1985

According to results of two polls done for the New York City Department of Health by the Gallup Organization in June 1985, 95\% of the U.S. population has heard of acquired immunodeficiency syndrome (AIDS) (Table 2). The surveys were done simultaneously-one, a sample of only New York City (N.Y.C.) residents, and the other, a national sample excluding New York City. To ascertain levels of knowledge about AIDS among adolescents, the sample was enlarged to include 304 youths 13-18 years of age.

In both the N.Y.C. and U.S. polls, respondents with incomes under \$10,000 were less likely to be aware of AIDS. There were no major regional differences in AIDS awareness in the national sample, although respondents in the East and West exhibited slightly higher levels of knowledge than respondents in the South and Midwest.

When asked, "Who is most likely to have AIDS?" one-half to two-thirds of all respondents mentioned homosexual men. In answer to the same question, N.Y.C. respondents were two to three times more likely to mention intravenous (IV) drug abusers than were U.S. respondents. (IV drug abusers comprise 36% of N.Y.C. AIDS patients, compared with 26% of all other AIDS patients.) When given a set of statements to be answered "true" or "false," both N.Y.C. and U.S. respondents demonstrated a high level of knowledge about AIDS (Table 3).

Reported by P Clarke, MPH, DJ Sencer, MD, New York City Dept of Health; AIDS Br, Div of Viral Diseases, Center for Infectious Diseases, Office of Public Affairs, CDC.
Editorial Note: In the absence of an available vaccine or specific therapy for the treatment of AIDS, broad-scale prevention and control activities must revolve around risk reduction and programs that positively affect behavioral changes and reduce transmission of human T-lymphotropic virus type III infection. Information on adolescent awareness of AIDS is important for designing programs to prevent the adoption of risk-taking behavior, such as high-risk sexual practices or abuse of IV drugs. The results of the two polls suggest that communication methods have been successful, not only in alerting the U.S. population to the general problem of AIDS, but also in raising awareness levels concerning certain high-risk behaviors. The increased awareness levels are encouraging, but initiatives now need to be targeted with specific strategies developed at the community level that encourage and reinforce personal decisions by high-risk individuals to avoid behaviors associated with transmission of infection.

AIDS - Continued
TABLE 2. Percentage of respondents aware of acquired immunodeficiency syndrome (AIDS)* - New York City, United States, June 1985

	Responses (\%)	
Respondents' characteristics	New York City	United States
Age		
$18-34$ yrs.	91	96
$35-49$ yrs.	97	96
$\geqslant 50$ yrs.	95	92
Sex		
\quad Male	95	94
\quad Female	94	95
Race		
\quad White	95	95
\quad Black	95	93
Education		
\quad Nonhigh-school graduate	90	85
\quad High-school graduate	95	96
College graduate	98	99
Total no. respondents	$\mathbf{1 . 0 2 3}$	$\mathbf{1 . 5 4 5}$

"Awareness was determined by answering "yes" to the question: "Have you heard or read about a disease called AIDS?"

TABLE 3. Beliefs about acquired immunodeficiency syndrome (AIDS) - New York City, United States, June 1985

Statement	Responses (\%)											
	United States			New York City			U.S. teen			N.Y.C.teen		
	T	F	U*	T	F	U	T	F	U	T	F	U
True												
Some people get AIDS when they receive blood transfusions.	92	3	5	90	6	4	86	11	3	80	16	4
Drug users who share needles have a higher risk of getting AIDS.	84	8	8	86	9	5	79	18	3	83	14	3
Most people with AIDS are homosexual men.	80	12	7	73	21	6	75	23	2	69	28	3
Some wives and girlfriends of drug users have gotten AIDS.	67	15	18	71	15	14	61	34	5	63	25	12
False												
You can get AIDS by shaking hands with someone who has it.	9	81	9	13	80	7	12	86	2	12	84	4
You can get AIDS by being in a crowded place with someone who has it.	9	81	9	15	78	7	14	84	2	14	81	5
Women cannot get AIDS.	6	88	6	8	87	5	8	90	2	12	86	2

*True; False; Unknown.

Cutaneous Leishmaniasis - Ohio

On January 19, 1985, a 23-year-old male graduate student in Ohio noted an ulceration on his left middle finger. He had visited the jungle of the San Blas Islands, Panama, 1 month earlier, where he was bitten by many insects. The ulcer became larger despite administration of oral erythromycin and dicloxacillin. On February 20, the student was admitted to a regional hospital with a $2 \times 2-\mathrm{cm}$ indurated ulcer overlying the proximal interphalangeal joint. There was no evidence of lymphatic spread. A biopsy from the edge of the lesion showed an intense lymphohistiocytic infiltrate involving the entire dermis. Cultures for bacteria, fungi, and mycobacteria were negative. He was treated with intravenous nafcillin and discharged on oral tetracycline.

The lesion persisted, and on March 14, another biopsy was performed. The same histologic picture was seen, and all cultures were again negative. A serum specimen submitted to CDC in March for Leishmania antibody testing had a titer of $1: 16$ by complement fixation (CF) and of $1: 16$ by indirect immunofluorescent antibody (IFA). By March 21, the ulceration had expanded, with subcutaneous nodules on the back of the hand extending up the arm. Epitrochlear and axillary adenopathy were present. A third biopsy was performed and submitted to Walter Reed Army Hospital for Leishmania culture. Growth of Leishmania braziliensis was reported on April 8.

The patient was treated with $10 \mathrm{mg} / \mathrm{kg} /$ day sodium stibogluconate intravenously for 21 days. At the beginning of the treatment, the ulceration measured $4.8 \mathrm{~cm} \times 3.5 \mathrm{~cm}$; by the end, the size of the ulcer had decreased 75% and was granulating well, and the subcutaneous nodules on the dorsum of the arm had resolved. Three months after completion of therapy, the ulcer had completely healed with only minimal adenopathy remaining.
Reported by C Camisa, MD, J Plouffe, MD, A Parks, MD, Dept of Medicine, Ohio State University, Columbus, B Green, MD, Dept of Medicine, Case Western University, Bowling Green, Ohio; Protozoal Diseases Br, Div of Parasitic Diseases, Center for Infectious Diseases, CDC.
Editorial Note: An estimated 12 million cases of leishmaniasis, visceral and cutaneous, occur worldwide each year (1). The protozoa, transmitted by the Phlebotomus sp., sandfly, occurs focally in the Americas from Yucatan, Mexico, through Central and South America to the Peruvian Andes. Old World cutaneous leishmaniasis is similarly widespread from the Union of Soviet Socialist Republics through the Middle East and Africa. The geographic distribution of the various Leishmania species was recently tabulated by the World Health Organization (2). Autochthonous human cutaneous leishmaniasis has been rarely seen in the United States and appears limited to south central Texas (3). The principal vectors and animal reservoir hosts in Texas have not been clearly defined.

The diagnosis is made via needle aspirate or tissue biopsy of the indurated margin of the ulcer. Giemsa stain should reveal 2-3 $\mu \mathrm{m}$ amastigotes, which appear pale blue with a red kinetoplast. However, in this case, Giemsa stain and other histologic preparations were unrewarding, and culture was necessary. Culture should be done on appropriate media (NNN or Schneider's Drosophila), and can be arranged with CDC ([404] 452-4240) through state and local health departments. Serology has superseded skin testing for Leishmania infection, since antigen for skin testing is no longer available in the United States. The serologic tests currently used at CDC are the CF and IFA, with a titer greater than 1:8 considered positive for CF and 1:16 for IFA. Cross-positive reactions are seen with Trypanosoma cruzi. A low or absent titer for cutaneous leishmaniasis does not rule out infection, as antibody may not be produced.

Three species of cutaneous Leishmania are seen in the Americas. Ulcers caused by L. peruviana or L. mexicana may heal spontaneously; however, those of L. braziliensis should always be treated because of the frequent occurrence of metastatic lesions. Treatment with antimonial compounds (in the United States, sodium stibogluconate, available through CDC: telephone [404] 329-3482) is generally successful, but relapses have been reported.

Cutaneous Leishmaniasis - Continued

The present case reminds U.S. clinicians that leishmaniasis should be included in the differential diagnosis of cutaneous ulcers in travelers, foreign visitors, and immigrants from endemic areas. Multiple diagnostic modalities, histology, culture, and serology may be needed to confirm infection; perseverance and consideration of the appropriate diagnoses were responsible for the successful treatment of this patient.

References

1. Walsh JA, Warren KS. Selective primary health care: An interim strategy for disease control in developing countries. N Engl J Med 1979;301:967-74.
2. World Health Organization. The Leishmaniases: Report of a WHO expert committee. Geneva, 1984. WHO technical report series no. 701.
3. Gustafson TL, Reed CM, McGreevy PB, Pappas MG, Fox JC, Lawyer PG. Human cutaneous leishmaniasis acquired in Texas. Am J Trop Med Hyg 1985;34:58-63.

FIGURE I. Reported measles cases - United States, weeks 29-32, 1985

ロU.S. Government Printing Office: 1985-746-149/21012 Region IV

DEPARTMENT OF HEALTH \& HUMAN SERVICES

Public Health Service
Centers for Disease Control
Atlanta GA 30333

Official Business

Penalty for Private Use $\$ 300$

Postage and Fees Paid U.S. Dept. of H.H.S. HHS 396

